

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2020

Marking Scheme

Mathematics

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Blank Page

Contents

Paper 1

Solutions and marking scheme	5
Structure of the marking scheme5	,
Summary of mark allocations and scales to be applied	
Palette of annotations available to examiners 7	
Model solutions and detailed marking notes	8

Paper 2

Solut	ions and marking scheme	24
	Structure of the marking scheme	26
	Summary of mark allocations and scales to be applied	27
	Model solutions and detailed marking notes	28

Marcanna breise as ucht freagairt trí Ghaeilge		44
--	--	----

Marking Scheme – Paper 1, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	А	В	С	D	E
No of categories	2	3	4	5	6
5 mark scales	0, 5	0, 2, 5	0, 3, 4, 5		
10 mark scales	0, 10	0, 5, 10	0, 4, 8, 10	0, 3, 5, 8, 10	
15 mark scales	0, 15	0, 7, 15	0, 5, 10, 15	0, 4, 7, 11, 15	
20 mark scales	0, 20	0, 10, 20	0, 7, 13, 20	0, 5, 10, 15, 20	
25 mark scales	0, 25	0, 12, 25	0, 8, 17, 25	0, 6, 12, 19, 25	0, 5, 10, 15, 20, 25

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

E-scales (six categories)

- response of no substantial merit
- response with some merit
- response almost half-right
- response more than half-right
- almost correct response
- correct response

NOTE: In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Rounding and units penalty to be applied only once in each section (a), (b), (c) etc. Throughout the scheme indicate by use of * where an arithmetic error occurs.

Summary of mark allocations and scales to be applied

Section .	4	Section	В
Questio	n 1	Questio	n 7 (50 Marks)
(a)(i)	10C	(a)(i)	10C
(a)(ii)	5C	(a)(ii)	5C
(a)(iii)	5C	(b)(i)	5C
(b)	5D	(b)(ii)	5C
		(b)(iii)	
Question	ז 2	(c)	5C
(a)	5D	(d)	15D
(b) (i)	5C		
(b) (ii)	15D	Questio	n 8 (45 Marks)
		(a)(i)	5C
Question	n 3	(a)(ii)	10C
(a)	10C	(a)(iii)	15D
(b)(i)	5C	(a)(iv)	5C
(b)(ii)	10D	(b)	10D
	_		
Question			n 9 (55 Marks)
(a)	15D	(a)(i)	10C
(b)	5D	(a)(ii)	10C
(c)	5C	(b)	10D
		(c)	10C
Question		(d)	5C
(a)	15C	(e)	10C
(b)	10D		
Question 6			
(a)	15C		
(a) (b)(i)	5C		
(0)(1)			

(b)(ii) 5D

Palette of annotations available to examiners

Symbol	Name	Meaning in the body of the work	Meaning when used in the right margin
✓	Tick	Work of relevance	The work presented in the body of the script merits full credit
ж	Cross	Incorrect work (distinct from an error)	The work presented in the body of the script merits 0 credit
*	Star	Rounding or Unit or Arithmetic error Misreading	
~~~~	Horizontal wavy	Error	
<b>√</b> 1	Tick L		The work presented in the body of the script merits low partial credit
✓m	Tick M		The work presented in the body of the script merits mid partial credit (or partial credit)
✓h	Tick H		The work presented in the body of the script merits high partial credit
<b>F</b> *	F star		The work presented in the body of the script merits Full Credit (– 1)
C	Left Bracket		Another version of this solution is presented elsewhere and it merits equal or higher credit
$\widetilde{\mathbf{x}}$	Vertical wavy	No work on this page (portion of the page)	
0	Oversimplify	The candidate has oversimplified the work	

**Note:** Where work of substance is presented in the body of the script, the annotation on the right margin should reflect a combination of annotations in the work

e.g. In a **C scale** where * and and and appear in the body of the work then should be placed in the right margin.

In the case of a **D** scale with the same level of annotation then should be placed in the right margin.

A ✓ in the body of the work may sometimes be used to indicate where a portion of the work presented has value and has merited one of the levels of credit described in the marking scheme. The level of credit is them indicated in the right margin.

#### **Detailed marking notes**

#### **Model Solutions & Marking Notes**

**Note:** The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Q1	Model Solution – 25 Marks	Marking Notes
(a) (i)	f(-3) = 0 $f(-3) = -3^{2} + 5(-3) + p = 0$ 9 - 15 + p = 0 p = 6 Or $x^{2} + 5x + p = (x + 3)(x + a)$ $= x^{2} + x(a + 3) + 3 a$ a + 3 = 5 a = 2 p = 3a p = 6 Or x + 2 x + 3 $x^{2} + 5x + p$ x + 2 x + 3 $x^{2} + 5x + p$ $x^{2} + 5x + p$ $x^{2} + 5x + p$ $x^{2} + 2x$ 3x + p 3x + 6 $p - 6 = 0 \ p - 6$ p = 6	Scale 10C (0, 4, 8, 10)         Low Partial Credit:         Demonstrates understanding of x + 3 as factor or - 3 as root e.g. (x + 3), f(-3)         High Partial Credit:         Relevant equation in p (with p as only unknown)

(a) (ii)	$x^{2} + 5x + p = (x - \alpha)(x - \alpha - 3)$ $= x^{2} + x(-\alpha - \alpha - 3) + \alpha^{2} + 3 \alpha$ $-2\alpha - 3 = 5$ $\alpha = -4$ $p = 16 - 12$ $p = 4$ Or $\alpha, \alpha + 3 = roots$ $\alpha + \alpha + 3 = -5$ $2\alpha = -8$ $\alpha = -4$ and $\alpha + 3 = -1$ $p = (-1)(-4) = 4$	Scale 5C (0, 3, 4, 5) Low Partial Credit: Demonstrates understanding of 3 as difference of roots e.g. $\alpha$ with $\alpha \pm 3$ $x^2 - x(sum) + product = 0$ One correct value for $p$ $x^2 + 5x + p > 0$ Sketch of U-shaped quadratic with turning point above the x-axis High Partial Credit: Relevant equation in $\alpha$ (with $\alpha$ as only unknown Full Credit (- 1): p > 6.25
(a) (iii)	$b^{2} - 4ac < 0$ $5^{2} - 4(1)(p) < 0$ 25 - 4p < 0 4p > 25 p > 6.25 p = 7 and $p = 8$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $b^2 - 4ac$ One correct value for $p$ $x^2 + 5x + p > 0$ High Partial Credit: Relevant inequality in $p$ (with $p$ as only unknown Full credit (-1): p > 6.25

(b)			
	$-1 \le 2x + 5 \le 1$	$2x + 5 \le 1$	Scale 5D (0, 2, 3, 4, 5)
	$-6 \le 2x \le -4$	$2x \leq -4$	Low Partial Credit: $(2m+5)^2 < 1$
	-3 < x < -2	$x \leq -2$	$(2x+5)^2 \le 1$
	$-3 \leq x \leq -2$		one linear inequality
		$-1 \le 2x + 5$	Mid Partial Credit:
		$-6 \leq 2x$	$-1 \le 2x + 5 \le 1$
		$-3 \le x$	Identifies both linear inequalities
			Quadratic inequality involving 0
		$-3 \le x \le -2$	
			High Partial Credit:
			Finding –3 and –2 in Methods 1 or 2 Roots of quadratic found
	Or		$-6 \le 2x \le -4$ or equivalent
	$(2x+5)^2 \le 1$		<b>Note:</b> Accept $-3 < x < -2$
	$4x^2 + 20x + 25$	$5 \leq 1$	
	$4x^2 + 20x + 24$	$l \leq 0$	
	$x^2 + 5x + 6 \le$	0	
	(x+2)(x+3)	$\leq 0$	
	x = -2, x = -3	3	
	-3 <u>-</u> 3	$\leq x \leq -2$	

Q2	Model Solution – 25 Marks	Marking Notes
(a)	$iz_1 = -4 + 3i$	Scale 5D (0, 2, 3, 4, 5)
	-	Low Partial Credit:
	$i(iz_1) = i(-4+3i)$	Either equation multiplied/divided by <i>i</i>
	$-z_1 = -4i + 3i^2$	Mid Partial Credit:
	$z_1 = 3 + 4i$	$z_1$ found
	$3z_1 - z_2 = 3(3 + 4i) - z_2 = 11 + 17i$	$z_2$ written in terms of $z_1$ with
	$z_2 = 9 + 12i - 11 - 17i$	z ₁ substituted
	$z_2 = -2 - 5i$	$z_1$ eliminated
	Or	High Partial Credit
		$z_1$ found and substituted into second
	$z_1 = \frac{(-4+3i)(-i)}{(i)(-1)}$	equation $z_2$ found by elimination
	$z_1 = 3 + 4i$ and continues	
(b)		
(i)	$r = \frac{T_2}{T_1} = \frac{5-i}{3+2i} \times \frac{3-2i}{3-2i}$	Scale 5C (0, 3, 4, 5) Low Partial Credit:
	1	
	$r = \frac{15 - 13i - 2}{9 + 4}$	$\frac{T_2}{T_1}$
	13 – 13 <i>i</i>	High Partial Credit:
	$r = \frac{13 - 13i}{13}$	$\frac{5-i}{3+2i} \times \frac{3-2i}{3-2i}$
	r = 1 - i	$\overline{3+2i} \times \overline{3-2i}$
(b)		
(ii)	$T_9 = ar^8$	Scale 15D (0, 4, 7, 11, 15)
	$T_9 = (3+2i)(1-i)^8$	Low Partial Credit: $T_9 = ar^8$
	$\pi$ (2 a) $\left( \sqrt{2} \left( 7\pi \sqrt{7\pi} \right)^8 \right)^8$	Any correct use of De Moivre
	$T_{9} = (3+2i) \left( \sqrt{2} \left( \cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right) \right)^{8}$	Some use of De Moivre's Theorem on $r$
	$T_9 = (3+2i)(\sqrt{2})^8 \left(\cos\frac{7\pi(8)}{4}\right)$	Mid Partial Credit:
		Modulus and argument found for $r$
	$+i\sin\frac{7\pi(8)}{4}$	High Partial Credit:
	- /	Solution in polar form with some
	$T_9 = (3+2i)(16)(\cos 14\pi + i\sin 14\pi)$ $T_7 = (2+2i)(16)(1+0i)$	simplification
	$T_9 = (3+2i)(16)(1+0i)$	<b>Note</b> : Accept candidates <i>r</i> from <b>(b)(i)</b>
	$T_9 = 48 + 32i$	

Q3	Model Solution – 25 Marks	Marking Notes
(a)	$fg(x) = f\left(\frac{x+5}{6}\right)$ $fg(x) = 6\left(\frac{x+5}{6}\right) - 5 = x$ $gf(x) = g(6x-5)$ $gf(x) = \frac{(6x-5)+5}{6} = \frac{6x}{x} = x$	Scale 10C (0, 4, 8, 10) Low Partial Credit: $f\left(\frac{x+5}{6}\right)$ g(6x-5) Particular case verification High Partial Credit: One correct composition simplified to $x$
(b) (i)	$log_5 y = log_5 5x^2$ $log_5 y = log_5 5 + log_5 x^2$ $log_5 y = 1 + 2 log_5 x$ a = 1  and  b = 2	Scale 5C (0, 3, 4, 5) Low Partial Credit: $\log_5 5x^2 = \log_5 y$ $\log_5 y = \log_5 5x^2$ High Partial Credit: $\log_5 y = \log_5 5 + \log_5 x^2$
(b) (ii)	$\log_5 y = \log_5 5x^2 = 2 + \log_5 \left(\frac{126x}{25} - 1\right)$ $\log_5 5x^2 = \log_5 \left(\frac{126x}{25} - 1\right) \times 25$ $5x^2 = 126x - 25$ $5x^2 - 126x + 25 = 0$ $(5x - 1)(x - 25) = 0$ $x = \frac{1}{5} \text{ or } x = 25$ $y = 5x^2 = 5\left(\frac{1}{5}\right)^2 2 = \frac{1}{5}$ $\text{ or } y = 5(25)^2 = 3125$	<ul> <li>Scale 10D (0, 3, 5, 8, 10)</li> <li>Low Partial Credit:</li> <li>Some relevant use of laws of logs</li> <li>Mid Partial Credit:</li> <li>Quadratic equation</li> <li>High Partial Credit:</li> <li>x values found</li> <li>Note: If 2 is incorrectly (non log) dealt with then award MPC at most</li> <li>Note: If incorrect work leads to a non-quadratic equation then award MPC at most</li> </ul>

Q4	Model Solution – 25 Marks	Marking Notes
(a)	$f'(x) = 3x^{2} + 2kx + 15$ $3(3)^{2} + 2k(3) + 15 = -12$ 27 + 6k + 15 = -12 6k = -54 k = -9	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: Any relevant differentiation Mid Partial Credit: Expression fully differentiated High Partial Credit: Derivative fully substituted No Credit: No differentiation
(b)	$f'(x) = 3x^{2} + 2(-9)x + 15$ $3x^{2} - 18x + 15 = 0$ $x^{2} - 6x + 5 = 0$ x = 1  x = 5 f(1) = 15  (1, 15) f(5) = -17  (5, -17) $m_{g(x)} = -\frac{32}{4} = -8$ y - 15 = -8(x - 1) g(x):  8x + y - 23 = 0	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: Any relevant differentiation <i>Mid Partial Credit:</i> Both <i>x</i> values found <i>High Partial Credit:</i> Turning points found
(c)	$f''(x) = 6x - 18 = 0$ $x = 3$ $f(3) = -1$ $(3, -1) \text{ is the point of inflection}$ $8(3) + (-1) - 23 = 0$ $0 = 0$ $\Rightarrow (3, -1) \in g(x).$	Scale 5C (0, 3, 4, 5) Low Partial Credit: f''(x) High Partial Credit: x coordinate of point of inflection found Point of inflection found Note: Accept candidates $g(x)$ from (b) with relevant statement

Q5	Model Solution – 25 Marks	Marking Notes
(a)	$A = \frac{250000(0.0287)(1.00287)^{300}}{(1.00287)^{300} - 1}$ $A = \pounds 1244.06$ Or $\frac{A}{1.00287^{1}} + \frac{A}{1.00287^{2}} + \dots \frac{A}{1.00287^{300}}$ $= 250000$ $A \left[ \frac{\frac{1}{1.00287} \left( \frac{1}{1.00287} - 1 \right)}{\frac{1}{1.00287} - 1} \right] = 250000$ $200.9544372 \times A = 250000$ $A = \pounds 1244.06$	Scale 15C (0, 5, 10, 15) Low Partial Credit: Formula with some correct substitution (1.00287) 300 High Partial Credit: Formula fully substituted
(b)	$\frac{1771}{1\cdot003} + \frac{1771}{1\cdot003^2} + \dots + \frac{1771}{1\cdot003^{167}} + \frac{1771}{1\cdot003^{168}}$ $S_{168} = \frac{\frac{1771}{1\cdot003} \left[ \left(\frac{1}{1\cdot003}\right)^{168} - 1 \right]}{\frac{1}{1\cdot003} - 1}$ $= €233438\cdot25$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: 1771 $\overline{1003}$ 168 Mid Partial Credit: $S_{168}$ formula with some substitution High Partial Credit: Formula fully substituted

Q6	Model Solution – 25 Marks	Marking Notes
(a)	f(x) = (3x - 5)(2x + 4) = $6x^2 + 2x - 20$ $f(x + h) = 6(x + h)^2 + 2(x + h) - 20$ = $6x^2 + 12hx + 6h^2 + 2x + 2h - 20$ $f(x + h) - f(x) = 12hx + 6h^2 + 2h$ $\frac{f(x + h) - f(x)}{h} = 12x + 6h + 2$ $\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = 12x + 2$ f'(x) = 12x + 2	Scale 15C (0, 5, 10, 15) Low Partial Credit: Some substitution into $f(x + h)$ or $y + \Delta y$ High Partial Credit: $f(x + h) - f(x) = 12hx + 6h^2 + 2h$ No Credit: Not from first principles $(3x - 5)(2x + 4) = 6x^2 + 2x - 20$
(b) (i)	$h'(x) = \frac{1}{2} \left( \frac{1}{2x+3} \right) (2)$ $= \frac{1}{2x+3}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: Any relevant differentiation High Partial Credit: $\frac{1}{2}\left(\frac{1}{2x+3}\right)$
(b) (ii)	$\int_{0}^{A} \frac{1}{2x+3} dx = \ln 3$ $\frac{1}{2} \ln(2x+3) \mid_{0}^{A} = \ln 3$ $\frac{1}{2} (\ln(2A+3) - \ln 3) = \ln 3$ $\frac{1}{2} \ln\left(\frac{2A+3}{3}\right) = \ln 3$ $\ln\left(\frac{2A+3}{3}\right)^{\frac{1}{2}} = \ln 3$ $\left(\frac{2A+3}{3}\right)^{\frac{1}{2}} = 3$ $\frac{2A+3}{3} = 9$ $2A+3 = 27$ $2A = 24$ $A = 12$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: Integration indicatedMid Partial Credit: $\frac{1}{2}\ln(2x+3) \mid_{0}^{A}$ Substitutes limits into integral and stops Correct integration with some substitutionHigh Partial Credit: Integral evaluated at $x = A$ only (i.e. omits $\ln 3$ on LHS and finishesNote: Must have integration to gain any credit

Q7									Marking Notes	
(a) (i)									Scale 10C (0, 4, 8, 10)	
(')	Т.	$T_1$	$T_2$	$T_3$	$T_4$	$T_5$	$T_6$	<i>T</i> ₇	$T_8$	Low Partial Credit:
	No.	1	3	6	10	15	21	28	36	One correct new entry
	110.	-	5	Ŭ	10	15	21	20	50	High Partial Credit:
										Three correct new entries
				n						
(a) (ii)				$\frac{\pi}{2}($	n +	1) =	127	5		Scale 5C (0, 3, 4, 5)
()				$n^2$ -	+ n -	- 22!	50 =	: 0		Low Partial Credit:
				(n	- 50	))(n	+ 51	)		$\frac{n}{2}(n+1) = 1275$
				(n		= 50		.)		2
		~		+						High Partial Credit:
	1	275	is th	e 50'	n tria	angul	lar n	umbe	er	n = 50
									Note: accept $T_{50}$ as valid reason	
(b) (i)	$T_{n+1} = T_n + (n+1)$						11)		Scala $EC(0, 2, 4, E)$	
(1)	$= \frac{n}{2}(n+1) + (n+1)$								Scale 5C (0, 3, 4, 5) Low Partial Credit:	
			$=\frac{\pi}{2}$	(n +	- 1) -	+ (n	+ 1)			2 identified as C.D.
									Correct numerator	
	$=\frac{n(n+1)+2(n+1)}{2}$							_	High Partial Credit:	
	$=\frac{(n+1)(n+2)}{2}$						2)		$= \frac{n(n+1) + 2(n+1)}{2}$	
			=	: <u> </u>	2	-				$=\frac{1}{2}$
(b) (ii)				т	$\frac{1}{n+1}$	$\perp T$				Scale 5C (0, 3, 4, 5)
(11)			(							Low Partial Credit:
		=	(n -	- 1)(	<u>n +</u>	<u>_</u> +	$\frac{n}{2}(n$	+ 1)	)	$T_{n+1} + T_n$ with some substitution
	$=\frac{(n+1)(n+2)}{2} + \frac{n}{2}(n+1)$						2		Particular case verification	
	$=\frac{(n+1)(2n+2)}{2}$						ΓΔ)		High Partial Credit:	
	2								5	
	$=\frac{2(n+1)(n+1)}{2}$						· 1)		$\frac{(n+1)(n+2)}{2} + \frac{n}{2}(n+1)$	
				=	: (n -	⊦ 1)²	2			
						,				

(b) (iii)	$(n+1)^2 = 12544$ $n+1 = \sqrt{12544} = 112$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $(n + 1)^2$
	n = 111 $n = 111$	High Partial Credit: n = 111, or $n = 112$
	$T_{111}$ is the smaller term	
	$T_{111} = \frac{111(112)}{2}$	
	$T_{111} = 6216$	
(c)	$N_3 = \left(\frac{\left(3 + 2\sqrt{2}\right)^3 - \left(3 - 2\sqrt{2}\right)^3}{4\sqrt{2}}\right)^2$	Scale 5C (0, 3, 4, 5) Low Partial Credit: Formula with some substitution
	= 1225	High Partial Credit: Formula fully substituted
		<i>Full Credit:</i> Correct answer with no work shown

(d)		
(u)	$1^2 + 2^2 + 3^2 + \dots + n^2 =$	Scale 15D (0, 4, 7, 11, 15)
	n(n+1)(2n+1)	Low Partial Credit:
	6	Step $P(1)$
		Mid Partial Credit:
	$P(1): 1 = \frac{1(2)(3)}{6}$	Step $P(k+1)$
	6	
		High Partial Credit:
	$P(k): 1 + 4 + 9 + \dots + k^2 =$	Uses Step $P(k)$ to prove Step $P(k + 1)$
		Full Crodit( 1)
	$\frac{k(k+1)(2k+1)}{\epsilon}$	Full Credit(-1): Concluding statement missing
	0	concluding statement missing
		<b>Note:</b> Accept Step $P(1)$ , Step $P(k)$ ,
	$P(k + 1): 1 + 4 + 9 + \dots + k^2 + (k + 1)^2$	Step $P(k + 1)$ in any order
	(k+1)(k+2)(2k+3)	
	$=\frac{(k+1)(k+2)(2k+3)}{6}$	
	C C	
	$LHS = \frac{k(k+1)(2k+1)}{6} + (k+1)^2$	
	$LHS = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$	
	$LHS = \frac{6}{6}$	
	$LHS = \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$	
	LHS =	
	$(k+1)[2k^2+7k+6]$	
	$LHS = \frac{(k+1)[2k^2 + 7k + 6]}{6}$	
	(k + 1)(k + 2)(2k + 3)	
	$\frac{(k+1)(k+2)(2k+3)}{6} = RHS$	
	Thus the proposition is true for $n = k + 1$ provided it is true for $n = k$ but it is true	
	for $n = 1$ and therefore true for all	
	positive integers.	
	positive integers.	

Q8	Model Solution – 45 Marks	Marking Notes
(a) (i)	$\cos \theta = \frac{x}{5} \qquad \sin \theta = \frac{y}{5}$ $5 \cos \theta = x \qquad 5 \sin \theta = y$ $(x, y) = (5 \cos \theta, 5 \sin \theta)$ $\therefore a = 5, b = 5$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $\cos \theta = \frac{x}{5}$ or equivalent High Partial Credit: a or $b$ found Correct answer without work
(a) (ii)	$A(\theta) = (10\cos\theta) \times (10\sin\theta)$ $A(\theta) = 100\cos\theta\sin\theta$ $= 50 \times 2\cos\theta\sin\theta$ $= 50(\sin 2\theta)$	Scale 10C (0, 4, 8, 10)         Low Partial Credit: $xy$ $(10 \cos \theta) \times (10 \sin \theta)$ High Partial Credit: $100 \cos \theta \sin \theta$
(a) (iii)	$A(\theta) = 50 \sin 2\theta$ $A'(\theta) = 50 \cos 2\theta \times 2$ $A'(\theta) = 100 \cos 2\theta = 0$ $\cos 2\theta = 0$ $2\theta = \frac{\pi}{2}$ $\theta = \frac{\pi}{4}$ $2x = 2\left(5\cos\left(\frac{\pi}{4}\right)\right) = 5\sqrt{2}$ $2y = 2\left(5\sin\left(\frac{\pi}{4}\right)\right) = 5\sqrt{2}$ $\Rightarrow \text{ Square}$	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: $a'(\theta)$ States $\frac{dy}{dx} = 0$ Mid Partial Credit: Correct differentiation High Partial Credit: Value of $\theta$ at maximum found Value of $x$ or $y$ at maximum fully substituted No Credit: No differentiation
(a) (iv)	Max area = $5\sqrt{2} \times 5\sqrt{2}$ = 50 Square units Or Max area = $50(\sin 2\theta)$ $50(\sin \frac{\pi}{2})$ = 50 Square units	Scale 5C (0, 3, 4, 5) Low Partial Credit: xy length $\times$ width $50(\sin 2\theta)$ High Partial Credit: Area formula fully substituted

(b) $\frac{dx}{dt} = \frac{dx}{dl} \cdot \frac{dl}{dt}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: $\frac{dx}{dt}$ or $\frac{dx}{dl}$ or $\frac{dl}{dt}$ given
$\frac{2}{5} = \frac{x}{l+x}$ $2l + 2x = 5x$	$\frac{dt}{dt} = \frac{dt}{dl} = \frac{dt}{dt} = \frac{dt}{dt}$ Reference to similar triangles $\frac{2}{5} = \frac{5}{2}$
$x = \frac{2}{3}l$ $\frac{dx}{dl} = \frac{2}{3}$ $\frac{dx}{dt} = \frac{2}{3} \times \frac{3}{2}$ $\frac{dx}{dt} = 1 \text{ m/sec}$	Mid Partial Credit: $\frac{dx}{dt} = \frac{dx}{dl} \cdot \frac{dl}{dt} \text{ or equivalent with one}$ relevant substitution $x = \frac{2}{3}l$ High Partial Credit: $\frac{dx}{dl} \text{ and } \frac{dl}{dt} \text{ found}$

Q9	Model Solution – 55 Marks	Marking Notes
(a) (i)	$N(t) = 450e^{0.065t}$ $N(4.5) = 450e^{0.065(4.5)}$ $= 602.89$ $= 603$	Scale 10C (0, 4, 8, 10) Low Partial Credit: Some substitution into function Correct answer without work High Partial Credit: $450e^{0.065(4.5)}$
(a) (ii)	$N(t) = 450e^{0.065t}$ $\frac{N(t)}{450} = e^{0.065t}$ Convert to log equation $\ln(\frac{N(t)}{450}) = 0.065t$ $\ln(N(t)) - \ln 450 = 0.065t$ $\frac{\ln(N(t)) - \ln 450}{0.065} = t$ $t = \frac{\ln(790) - \ln 450}{0.065}$ t = 8.7	Scale 10C (0, 4, 8, 10)Low Partial Credit:Some substitution into functionFull substitution and stopsHigh Partial Credit:Equation in t ( i.e. logs handled correctly)

(b)		
	$\frac{1}{9} \int_{3}^{12} 450 e^{0.065t} dt$ $= \frac{450}{9(0.065)} \left[ e^{12(.065)} - e^{3(0.065)} \right]$ $= 743.2$ Average no. = 743	<ul> <li>Scale 10D (0, 3, 5, 8, 10)</li> <li>Low Partial Credit:</li> <li>Integration indicated</li> <li>Mid Partial Credit:</li> <li>Integration correct</li> <li>High Partial Credit:</li> <li>Substitutes limits into integral and stops</li> <li>Note: Must have integration to gain any</li> </ul>
(c)	$N'(t) = 450e^{0.065t} \times 0.065$ $N'(t) = 29.25e^{0.065t}$ $N'(12) = 29.25e^{0.065(12)}$	credit Scale 10C (0, 4, 8, 10) Low Partial Credit: N'(t) stated or indicated High Partial Credit:
	<ul> <li>= 63.8</li> <li>At hour 12 the population is growing at a rate of 64 bacteria per hour</li> <li>or</li> <li>At hour 12 the population is growing at a rate of 63.8 bacteria per hour</li> </ul>	Derivative fully substituted N'(12) = 63.8 and stops

(d)	$N'(t) = 29 \cdot 25e^{0 \cdot 065k} > 90$ $e^{0 \cdot 065k} > 29 \cdot 25$ $k > \frac{\ln \frac{90}{29 \cdot 25}}{0 \cdot 065}$ $k > 17 \cdot 29$ $k = 18$	Scale 10C (0, 4, 8, 10) Low Partial Credit: $29 \cdot 25e^{0 \cdot 065k} > 90$ High Partial Credit: Equation in k ( i.e. taking logs handled correctly) No Credit: No differentiation Note: if $k > 17 \cdot 29 \Rightarrow k = 17$ Award Full credit (-1)
(e)	$450e^{0.065t} = 220e^{0.17t}$ $\frac{450}{220} = \frac{e^{0.17t}}{e^{0.065t}}$ $\frac{450}{220} = e^{0.105t}$ $\ln\left(\frac{450}{220}\right) = 0.105t$ $\frac{\ln\left(\frac{450}{220}\right)}{0.105} = t$ $t = 6.82$ $t = 7 \text{ hours}$	Scale 10C (0, 4, 8, 10) Low Partial Credit: $450e^{0.065t} = 220e^{0.17t}$ High Partial Credit: Equation in t ( i.e. taking logs handled correctly)