

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2018

Marking Scheme

Mathematics

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Contents

Page

Paper 1

Solutions and marking scheme	. 2
Structure of the marking scheme 3	
Summary of mark allocations and scales to be applied 4	
Model solutions and detailed marking notes 5	

Paper 2

Solutions and marking scheme		20
Structure of the marking scheme	21	
Summary of mark allocations and scales to be applied	22	
Model solutions and detailed marking notes	23	

Blank Page

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Examination 2018

Mathematics

Higher Level

Paper 1

Solutions and Marking scheme

300 marks

Marking Scheme – Paper 1, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	А	В	С	D	E
No of categories	2	3	4	5	6
5 mark scales		0, 2, 5	0, 3, 4, 5		
10 mark scales			0, 4, 8, 10	0, 3, 5, 8, 10	
15 mark scales			0, 5, 10, 15	0, 5, 7, 11, 15	
20 mark scales				0, 5, 10, 15, 20	

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

E-scales (six categories)

- response of no substantial merit
- response with some merit
- response almost half-right
- response more than half-right
- almost correct response
- correct response

Marking Scheme

Section A		Section B	
Question 1		Question 7	
(a)	15D	(a)	15C
(b)	10D	(b)	5C
		(c)	20D
Question 2		(d)	5C
(a)	10C	(e)(i)	5B
(b)	10C	(e)(ii)	5C
(c)	5C		
Question 3		Question 8	
(a)	10D	(a)	10C
(b)	15D	(b)	10C
		(c)	10C
Question 4		(d)	10D
(a)	15D		
(b)	10C		
		Question 9	
Question 5		(a)	10C
(a)(i)	10C	(b)(i)	5B
(a)(ii)	10D	(b)(ii)	5C
(b)	5C	(C)(İ)	10C
		(C)(ii)	5B
		(d)(i)	10C
Question 6	100	(d)(II)	50
(a)	100	(d)(III)	5C
(I)(D)	TUC		
(II)(a)	5B		

Note: In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Throughout the scheme indicate by use of * where an arithmetic error occurs.

Detailed marking notes

Model Solutions & Marking Notes

Note: The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Q1	Model Solution – 25 Marks	Marking Notes
(a)		
	(<i>i</i>) $2x + 3y - z = -4$ × (2)	Scale 15D (0, 5, 7, 11, 15)
	(<i>ii</i>) $3x + 2y + 2z = 14$ × (-3)	Low Partial Credit:
		Matches coefficient of 1 variable in 2
	4x + 6y - 2z = -8	equations
	-9x - 6y - 6z = -42	Writes x in terms of z in eq (<i>iii</i>)
	-5x - 8z = -50	Mid Partial Credit:
	(<i>iii</i>) $x - 3z = -13 \times (5)$	1 unknown found with errors
	-5x - 8z = -50	Eliminates one unknown
	5x - 15z = -65	1 unknown found and stops
	-23z = -115	
	z = 5	High Partial Credit:
	$\Rightarrow x = 2$	2 unknowns found
	$\Rightarrow y = -1 \qquad \{2, -1, 5\}$	
(b)		
	$\frac{2x-3}{2} > 3$ × $(x+2)^2$	Scale 10D (0, 3, 5, 8, 10)
	$x+2 \stackrel{\geq}{=} 3 \qquad $	Low Partial Credit
		Use of $(x + 2)^2$
	$(2x-3)(x+2) \ge 3(x+2)^2$	Relevant work but with linear inequality
	$2x^2 + x - 6 \ge 3x^2 + 12x + 12$	Squares both sides with some subsequent
	$x^{-} + 11x + 18 \le 0$ $(x + 2)(x + 0) \le 0$	work (low partial credit at most)
	$(x+2)(x+3) \ge 0$	
		Mid Partial Credit:
		Quadratic inequality involving 0
		Hiah Partial Credit
		Roots of guadratic found
	$-9 \le x < -2$	
		Note : Accept $-9 \le x \le -2$

Q2	Model Solution – 25 Marks	Marking Notes
(a)		
	$\frac{5x-8}{x^2} = \frac{x+8}{5x-8}$ $(5x-8)^2 = x^2(x+8)$ $25x^2 - 80x + 64 = x^3 + 8x^2$ $x^3 - 17x^2 + 80x - 64 = 0$	Scale 10C (0, 4, 8, 10) Low Partial Credit: $\frac{5x-8}{x^2}$ or $\frac{x+8}{5x-8}$ Some effort at finding r in a geometric sequence (must use at least one of the terms) $r = \frac{T_n}{T_{n-1}}$ or similar High Partial Credit: $\frac{5x-8}{x^2} = \frac{x+8}{5x-8}$ $(5x-8)^2$ and $x^2(x+8)$ O credit: Treats as an arithmetic sequence
(b)	$f(x) = x^{3} - 17x^{2} + 80x - 64$ $f(1) = (1)^{3} - 17(1)^{2} + 80(1) - 64 = 0$ $\Rightarrow (x - 1) \text{ is a factor}$ $x^{3} - 17x^{2} + 80x - 64 = 0$ $x^{2}(x - 1) - 16x(x - 1) + 64(x - 1)$ $x^{2} - 16x + 64 = 0$ (x - 8)(x - 8) = 0 x = 8	Scale 10C (0, 4, 8, 10) Low Partial Credit: Shows $f(1) = 0$ Any correct substitution High Partial Credit: Quotient in quadratic form found Accept $x = 8$ without work if $f(1) = 0$ has been shown

(c)

$$\frac{x=1}{1^{2}, 5(1)-8, 1+8}$$

$$1,-3, 9 \text{ which doesn't have}$$

$$a \text{ sum to infinity } (|r| > 1)$$

$$\frac{x=8}{8^{2}, 5(8)-8, 8+8}$$

$$64,32,16.... a = 64 \text{ and } r = \frac{1}{2}$$

$$S_{\infty} = \frac{a}{1-r} = \frac{64}{1-\frac{1}{2}} = \frac{64}{\frac{1}{2}} = 128$$

$$K_{\infty} = \frac{a}{1-r} = \frac{64}{1-\frac{1}{2}} = \frac{64}{\frac{1}{2}} = 128$$

$$K_{\infty} = \frac{a}{1-r} = 128$$

$$K_{\infty$$

Q3	Model Solution – 25 Marks	Marking Notes
(a)	$h'(x) = -2\sin(2x)$ At $x = \frac{\pi}{3}$: $h'\left(\frac{\pi}{3}\right) = -2\sin\left(\frac{2\pi}{3}\right)$ $= -2\left(\frac{\sqrt{3}}{2}\right) = -\sqrt{3}$ tan $\theta = -\sqrt{3}$ $\theta = 120^{\circ}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Differentiation indicated Use of 2 Mid Partial Credit: Derivative found High Partial Credit: $\tan \theta = \text{evaluated derivative}$ $\theta = -60^{\circ}$ Note: Must use differentiation to gain any credit Note: If integration symbol appears then 0
		credit
(b)	$\frac{1}{\frac{\pi}{4} - 0} \int_0^{\frac{\pi}{4}} \cos(2x) dx$ $= \frac{4}{\pi} \left(\frac{\sin(2x)}{2}\right) \int_0^{\frac{\pi}{4}} \frac{1}{2}$ $= \frac{4}{\pi} \left(\frac{\sin\frac{\pi}{2}}{2} - \frac{\sin 0}{2}\right)$ $= \frac{4}{\pi} \left(\frac{1}{2}\right) = \frac{2}{\pi}$	Scale 15D (0, 5, 7, 11, 15) Low Partial Credit: Integration indicated Mid Partial Credit: $\cos 2x$ integrated correctly $\left(\frac{\sin(2x)}{2}\right)$ $-2 \sin 2x$ and finishes correctly High Partial Credit: Substitutes limits into integral and stops Integral evaluated at $x = \frac{\pi}{4}$ (i.e. omits $\frac{1}{\frac{\pi}{4}-0}$) and finishes Note : errors in integration could include An error in the trig function (including sign) An error in the angle An error in the application of the chain rule Note : Must have integration to gain any credit

Q4	Model Solution – 25 Marks	Marking Notes		
(a)				
	$P(1)$ $(\cos \theta + i \sin \theta)^{1} = \cos(1\theta) + i \sin(1\theta)$	Scale 15D (0, 5, 7, 11, 15) <i>Low Partial Credit:</i> Step <i>P</i> (1)		
	$P(k): Assume (\cos \theta + i\sin \theta)^{k}$ $= \cos(k\theta) + i\sin(k\theta)$ Test $P(k + 1):$ $(\cos \theta + i\sin \theta)^{k+1} =$ $= \cos(k + 1)\theta + i\sin(k + 1)\theta$ $(\cos \theta + i\sin \theta)^{k+1}$ $= (\cos \theta + i\sin \theta)^{k}. (\cos \theta + i\sin \theta)^{1}$ $= (\cos(k\theta) + i\sin(k\theta)). (\cos \theta + i\sin \theta)$ $= [\cos(k\theta) \cos \theta - \sin(k\theta)\sin \theta]$ $+i[\cos(k\theta) \sin \theta + \cos \theta \sin(k\theta)]$ $= \cos(k + 1)\theta + i\sin(k + 1)\theta$ Thus the proposition is true for $n = k + 1$ provided it is true for $n = k$ but it is true	Mid Partial Credit: Step $P(k)$ or Step $P(k + 1)$ High Partial Credit: Uses Step $P(k)$ to prove Step $P(k + 1)$ Note: Accept Step $P(1)$, Step $P(k)$, Step P(k + 1) in any order Full credit -1: Omits conclusion but otherwise correct Full credit: $[r(\cos \theta + i\sin \theta)]^n$ $= r^n (\cos(n\theta) + i\sin(n\theta))$ proved correctly		
	for $n = 1$ and therefore true for all positive integers.			
(b)	$\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3 = 1\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^3$ $= \left(\cos(3)\frac{2\pi}{3} + i\sin(3)\frac{2\pi}{3}\right)$ $= (\cos 2\pi + i\sin 2\pi) =$ $1 + 0i$ $= 1$	Scale 10C (0, 4, 8, 10) Low Partial Credit: Modulus or argument correct Some correct multiplication Apply De Moivre correctly with incorrect modulus and argument High Partial Credit: $\left(\cos(3)\frac{2\pi}{3} + i\sin(3)\frac{2\pi}{3}\right)$ Multiplication correct but un-simplified Full credit -1: $\cos 2\pi + i\sin 2\pi$ or $\cos 360^\circ + i\sin 360^\circ$ Accept: Answer with reference to cube root of unity		

Q5	Model Solution – 25 Marks	Marking Notes			
(a)					
(i)	45 [14 + 44(5)] = 5265	Scale 10C (0, 4, 8, 10)			
	$70w\ 2:\ 3_{45} = \frac{1}{2}[14 + 44(5)] = 5265$	Low Partial Credit:			
	45	Formulates S_{45} for row 1 or row 2			
	$row 1: S_{45} = \frac{10}{2} [8 + 44(3)] = 3150$	3+5+7			
		Identifies <i>a</i> or <i>r</i> for either row 1 or row 2			
	\therefore Difference = 2115				
		High Partial Credit:			
		S_{45} found for row 1 or row 2			
		Full credit –1:			
		Fails to subtract			
(a)					
(ii)	$T_1(\text{in row } 60): T_{60} = 4 + (60 - 1)3 = 181$	Scale 10D (0, 3, 5, 8, 10)			
		Low Partial Credit:			
	T_2 (in row 60) = T_{60} of 7, 12, 17, 22	Identifies T_{60} in column 1 or T_{70} In row 1 or			
	T = 7 + (60 - 1)5 = 202	equivalent			
	$I_{60} = 7 + (00 - 1)3 = 302$	Some relevant substitution into correct			
	∴ <i>T</i> ₇₀ of 181, 302,	formula			
	$-181 \pm (70 - 1)121 - 8530$	Identifies <i>a</i> or <i>d</i> for either row 1 or row 2			
		Mid Partial Credit:			
		Finds <i>a</i> in row 60 or row 70			
		Finds <i>d</i> in row 60 or row 70			
		High Partial Credit:			
		Formulates substituted expression for T_{70}			
		in row 60 or T_{60} in column 70			
		Finds both <i>a</i> and <i>d</i> in row 60 or row 70			
(b)					
	$a_3 = a_2 - a_1 = 2 - 4 = -2$	Scale 5C (0, 3, 4, 5)			
	$a_4 = a_3 - a_2 = -2 - 2 = -4$	Low Partial Credit:			
	$a_5 = a_4 - a_3 = -4 - (-2) = -2$	$a_3 = -2$			
	$a_6 = a_5 - a_4 = -2 - (-4) = 2$	$a_3 = a_2 - a_1$ or similar			
	$a_7 = a_6 - a_5 = 2 - (-2) = 4$				
	$a_8 = a_7 - a_6 = 4 - 2 = 2$	High Partial Credit:			
	Therefore, the sequence consists of a	Any 4 from a_3 , a_4 , a_5 , a_6 , a_7 and a_8 found			
	repeating pattern of				
	4, 2, -2, -4, -2, 2	Full credit —1:			
	$\therefore a_{2016} = 2 \text{ (multiple of 6)}$	$a_{3}, a_{4}, a_{5}, a_{6}$, and a_{2019} found			
	$\Rightarrow a_{2019} = -2$				
1					

Q6	Model Solution – 25 Marks	Marking Notes
(a)	$x^{3} = x$ $\Rightarrow x^{3} - x = 0$ $\Rightarrow x(x^{2} - 1) = 0$ x(x - 1)(x + 1) = 0 $x = 0 \text{ or } x = \pm 1$ (-1, -1), (0, 0), (1, 1)	Scale 10C (0, 4, 8, 10) Low Partial Credit: Equation written One correct solution from the graph Solution of the form (a, a) where $a \neq 0, 1$ High Partial Credit: Equation factorised (3 factors) 2 correct points x values only
(b) (i)	$2\int_{0}^{1} x - x^{3} dx$ = $2\left[\frac{x^{2}}{2} - \frac{x^{4}}{4}\right] = 2\left[\frac{1}{2} - \frac{1}{4} - 0\right] = \frac{1}{2}$ unit ²	Scale 10C (0, 4, 8, 10) Low Partial Credit: Integral indicated One relevant area found High Partial Credit: Integral evaluated at $x = 1$ (upper limit) $\int_{-1}^{1} x - x^{3} dx = 0$
(b) (ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Scale 5B (0, 2, 5) Partial Credit: Incomplete image 2 correct image points $k^{-1}(x) = x^{\frac{1}{3}}$

Q7	Model Solution – 55 Marks				Marking Notes					
(a)	$35 \cdot 96 = k \ln \left(1 - \frac{35}{80}\right)$ $35 \cdot 96 = k \ln \left(\frac{45}{80}\right)$ $k = \frac{35 \cdot 96}{\ln \left(\frac{45}{80}\right)}$ $k = -62 \cdot 5 \text{ to one place of decimals}$				Scale 15C (0, 5, 10, 15)Low Partial Credit:Effort at transposingSome substitution into functionFull substitution and stopsHigh Partial Credit:Function written in terms of k and fullysubstitutedOne incorrect substitution worked correctand with some reference to $k \neq -62.5$			ectly .•5		
(b)	$100 = -62.5 \ln \left(1 - \frac{x}{80}\right)$ $\frac{100}{-62.5} = \ln \left(1 - \frac{x}{80}\right)$ $e^{\frac{100}{-62.5}} = 1 - \frac{x}{80}$ $x = -80(e^{\frac{100}{-62.5}} - 1)$ $x = 64 \text{ wpm (To the nearest whole number)}$			Scale 5C (0, 3, 4, 5) Low Partial Credit: Some substitution into function Trial and improvement (more than 1 iteration) Correct answer without work High Partial Credit: $e^{\frac{100}{-62\cdot5}} = 1 - \frac{x}{80}$ Equation rewritten in terms of x or $\frac{x}{80} =$			=			
(c)	·									1
	x (wpm) t(x) (days)	0 10 0 8	20 18	30 29	40 43	50 61	60 87	70 130		
(c)	$(days) \qquad 0 \qquad 8 \qquad 18 \qquad 29$				Scale 2 Low Pa One en One plo Mid Pa 4 entrie High Po All plot values Table co	OD (0, 5 , rtial Cre try corre ot (from rtial Crea es correc artial Crea s consist s (with a orrect b	, 10, 15, dit: candida dit: ct and 4 edit: edit: t least 1 ut incor	20) Intes table plots of h candid correct rect plot	e) correc table val lates tabl value) ts	t lues le

(d)	t(x) 1000 1000 1000 1000 1000 1000 1000 1000	Scale 5C (0, 3, 4, 5) Low Partial Credit: One point on line identified One point (not origin) plotted High Partial Credit: 2 points on line identified and plotted
(e) (i)	Approx 62 wpm	Scale 5B(0, 2, 5) Partial Credit: Point of intersection indicated on graph h(x) written in terms of $xTolerance: \pm 2 wpm$
(e) (ii)	For Maximum Value: Set $h'(x) = 0$ $h(x) = 1.5x + 62.5 \ln \left(1 - \frac{x}{80}\right)$ $h'(x) = 1.5 + 62.5 \left(\frac{1}{1 - \frac{x}{80}}\right) \times \left(-\frac{1}{80}\right)$ = 0 $\frac{62.5}{80 - x} = 1.5$ $x = 80 - \frac{62.5}{1.5}$ x = 38.3 = 38 words $h \left(38\frac{1}{3}\right) = 1.5 \left(38\frac{1}{3}\right)$ $+ 62.5 \ln \left(1 - \frac{38\frac{1}{3}}{80}\right) = 16.73$ = 17 days	Scale 5C (0, 3, 4, 5) Low Partial Credit: Any correct differentiation $h(x) = 1.5x + 62.5 \ln \left(1 - \frac{x}{80}\right)$ h'(x) = 0 High Partial Credit: Differentiation correct but un-simplified Value for x and stops

Q8	Model Solution – 40 Marks	Marking Notes	
(a)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$ At $x = 0$: $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(0)^2}$ $= \frac{1}{\sqrt{2\pi}} (1)$ $\therefore (0, \frac{1}{\sqrt{2\pi}})$ is the y intercept	Scale 10C (0, 4, 8, 10) Low Partial Credit: x = 0 Value for x substituted into $f(x)$ High Partial Credit: $\frac{1}{\sqrt{2\pi}}$ Full credit – 1: (0, 0.3989)	
(b)	Area = $\left[(2) \left(\frac{1}{\sqrt{2\pi e}} \right) \right] = 0.4839$ = 0.484 Units ²	Scale 10C (0, 4, 8, 10) Low Partial Credit: length = 2 Width = [y co-ordinate] High Partial Credit: $\left[(1)(\frac{1}{\sqrt{2\pi e}})\right]$ Full credit -1: Area = -0.484 Zero Credit: Integrating original function	
(c)	$C(1, \frac{1}{\sqrt{2\pi e}}) \text{ due to symmetry}$ $f'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} (-x)$ $At \ x = 1: \ f'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(1)^{2}} (-1) < 0$ $\left[= -\frac{1}{\sqrt{2\pi e}} \ (-0.24197) < 0 \right]$ $\Rightarrow \text{ Decreasing}$	Scale 10C (0, 4, 8, 10) Low Partial Credit: x = 1 identified Some correct differentiation Indicates significance of $\frac{dy}{dx} < 0$ High Partial Credit: Derivative found	

(d)	$f'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (-x)$ $f''(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (-1)$ $+ (-x) \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (-x)$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (x^2 - 1)$ $f''(-1) = 0 \text{ as } 1^2 - 1 = 0$ $\Rightarrow \text{ point of inflection at } x = -1$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: f'(x) transferred or found Mention of $f''(x)$ Identifies $x = -1$ Mid Partial Credit: f''(x) identified and some correct differentiation High Partial Credit: f''(x) found Note: if the product rule and chain rule are not applied in finding $f''(x)$ then the candidate can be awarded mid partial credit at most

Q9	Model Solution – 55 Marks			Marking Notes		
(a)	Step	0	1	2	3	
	Triangles Remaining	1	3	9	27	
	Fraction of Original Triangle Remaining	1	$\frac{3}{4}$	9 16	$\frac{27}{64}$	
				Scale 10C (0, 4, 8, Low Partial Credit One correct entry High Partial Credit Three correct entr Full credit –1: Answers as decim	10) : t: ries als	
(b) (i)	3 <i>n</i>			Scale 5B (0, 2, 5) Partial Credit: 3n written n^3 written Full credit -1: 3^{n-1} written		
(b) (ii)	$3^{k} > 1,000,000,000$ $\log_{3} 3^{k} > \log_{3} 1\ 000\ 000\ 000$ $k\log_{3} 3 > \log_{3} 1\ 000\ 000\ 000$ $k > \log_{3} 1 \times 10^{9}$ k > 18.863 k = 19			Scale 5C (0, 3, 4, 5) Low Partial Credit: $3^k > 1,000,000,000$ High Partial Credit: Inequality with k not written as an index Note: if $3k$ or k^3 from above used fully here then award low partial credit at most		

(c) (i)	$\left(\frac{3}{4}\right)^{h} < \frac{1}{100}$ $\ln\left(\frac{3}{4}\right)^{h} < \ln\frac{1}{100}$ $h\ln\left(\frac{3}{4}\right) < \ln\frac{1}{100}$ $h > \frac{\ln\frac{1}{100}}{\ln\left(\frac{3}{4}\right)}$ $h > 16.007$ $\Rightarrow h = 17$			Scale 10C (0, 4 Low Partial Cr Correct answer $\left(\frac{3}{4}\right)^{h}$ or candid $r = \frac{3}{4}$ Lists two or m High Partial Cr Inequality with Full credit -1: $\left(\frac{3}{4}\right)^{h-1} < \frac{1}{100}$	4, 8, 10) edit: er without wo dates ratio to ore terms redit: h h not writto and finishes	ork • the power of <i>h</i> en as an index correctly	
(c) (ii)	$\lim_{n \to \infty} \left(\frac{3}{4}\right)^n = 0$ $\implies \text{Fraction remaining} = 0$			Scale 5B (0, 2, 5) Partial Credit: lim $n \rightarrow \infty$ Some use of $\frac{3}{4}$ Full Credit: Correct answer without work $\frac{1}{\infty}$ or equivalent			
(d) (i)		Step	0	1	2	3	4
		Perimeter	3	9 2	$\frac{27}{4}$	<u>81</u> 8	$\frac{243}{16}$
					Scale 10C (0, 4 Low Partial Cr One correct en All numerator denominator All denominator numerators High Partial Ch Two correct e	4, 8, 10) edit: ntry s correct with ors correct w redit: ntries	h all incorrect vith all incorrect

(d) (ii)	Pattern: $\frac{3^1}{2^0}, \frac{3^2}{2^1}, \frac{3^3}{2^2}, \dots, \frac{3^{n+1}}{2^n}$ \therefore step $35 = \frac{3^{36}}{2^{35}}$ = 4368329 Or $T_{35} = \left(\frac{9}{2}\right) \left(\frac{3}{2}\right)^{34} = 4368329$ Or $T_{35} = (3) \left(\frac{3}{2}\right)^{35} = 4368329$	Scale 5C (0, 3, 4, 5) Low Partial Credit: Pattern identified Recognises $r = \frac{3}{2}$ Some relevant substitution into $T_n = ar^{n-1}$ a = 3 or $a = 4.5High Partial Credit:Step 35 = \frac{3^{36}}{2^{35}} or equivalentFull credit -1:T_{35} = (3) \left(\frac{3}{2}\right)^{34}$
(d) (iii)	Area = 0 $\lim_{n \to \infty} \left(\frac{3^{n+1}}{2^n} \right) = \infty$ $\Rightarrow \text{Perimeter } \rightarrow \infty$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $\lim_{n\to\infty} \left(\frac{3^{n+1}}{2^n}\right) \text{ or equivalent}$ Area is getting smaller Perimeter is increasing High Partial Credit: Area approaches 0 Perimeter $\rightarrow \infty$ identified Area is getting smaller and Perimeter is increasing

Blank Page